
GUIDE

STORMSHIELD DATA SECURITY FOR
KUBERNETES INIT CONTAINER

ADMINISTRATION GUIDE
Version 2.0

Document last updated: November 19, 2025

Reference: sds-en-kubernetes-init_container_guide-v2



Table of contents
1. Getting started 3

2. Understanding the requirements 4
2.1 Security requirements 4
2.1.1 Environment 4
2.1.2 Administration 4
2.1.3 Kubernetes 4
2.1.4 KMaaS 5

2.2 Infrastructure requirements 5

3. Preparing the SDS for Kubernetes init container environment 6
3.1 Loading the Docker images in Kubernetes 6
3.2 Configuring the KMaaS 6
3.3 Setting the KMaaS parameters in the environment 6

4. Encrypting and decrypting sensitive data 8
4.1 Understanding encrypt and decrypt operations 8
4.1.1 Encrypt workflow 8
4.1.2 Decrypt workflow 9

4.2 Encrypting sensitive data 9
4.3 Creating the Kubernetes secrets 9
4.4 Configuring the Kubernetes manifest 10
4.5 Decrypting sensitive data 11

5. Managing logs 12
5.1 Logging prerequisites 12
5.2 Accessing logs 12
5.3 Generic log fields 12
5.4 Domain - Business operation logs 13
5.4.1 secrets category 13

6. Further reading 14

SDS FOR KUBERNETES INIT CONTAINER - ADMINISTRATION GUIDE - V 2.0

Page 2/15 sds-en-kubernetes-init_container_guide-v2 - 11/19/2025



1. Getting started
SDS for Kubernetes init container allows Kubernetes administrators to manage Kubernetes
secrets in their clusters using state-of-the-art security practices.

Without SDS for Kubernetes init container, a Kubernetes secret is stored unencrypted in the API
server's data store (etcd), and can be retrieved by anyone with API access.

With SDS for Kubernetes init container, sensitive data stored in a Kubernetes secret is less
exposed as it is only loaded into memory during the pod lifetime.

This solution is based on three technologies:

l SDS Key Management as a Service (KMaaS) with the Key Access Service (KAS) feature
enabled
Provides an API for encrypting/decrypting sensitive data using Data Encryption Keys
(DEKs).

l Stormshield Software Development Kit (SDK)
Provides higher-level and standardized methods to encrypt/decrypt:
o SDSDK manages DEKs and calls the KMaaS so that the end user does not need to

perform these actions,
o Encrypted sensitive data is stored with metadata using a standardized format.

l Kubernetes init container
An init container is a temporary container that runs before the main application container to
perform various preliminary tasks. The SDS for Kubernetes init container solution uses init
containers to:
o Decrypt data using the SDSDK, which calls the KMaaS,
o Save the decrypted data into an ephemeral Kubernetes volume in RAM, shared with the

main application container. This ensures that the decrypted data is no longer accessible
when the main application container is terminated.

SDS for Kubernetes init container provides a script, encryptor.cjs, to encrypt sensitive data.

 NOTE
The use of the solution in any way other than as described in the documentation is not managed.
Alternatively, get in touch with Stormshield Support for clarification.

SDS FOR KUBERNETES INIT CONTAINER - ADMINISTRATION GUIDE - V 2.0
1. GETTING STARTED

Page 3/15 sds-en-kubernetes-init_container_guide-v2 - 11/19/2025



2. Understanding the requirements

2.1 Security requirements

2.1.1 Environment

l The server on which SDS for Kubernetes init container is installed must be healthy. There
must be an information system security policy whose requirements are met on the server.
This policy shall ensure that the installed software is regularly updated and the system is
protected against viruses and spyware or malware (firewall properly configured, antivirus
updates, etc.). It is imperative to follow:
o The operating system security recommendations issued by the ANSSI in their document

ANSSI-BP-028-EN.
o The security recommendations for docker container deployments issued by the ANSSI in

their document ANSSI-FT-082 (in French only), and OWASP.

l Access to the administrative functions of the workstation system is restricted only to
system administrators.

l The operating system must manage the logs generated by the product in accordance with
the security policy of the company. It must for example restrict read access to these logs to
only those explicitly permitted. For more information, refer to the section Logging
prerequisites.

l You must set up a system upstream of SDS for Kubernetes init container to protect against
distributed denial-of-service (DDoS) and brute-force attacks. Please follow the ANSSI
recommendations (in French only).

l SDS for Kubernetes init container must be installed on a server whose system and
OpenSource contributions are kept up to date.

l The server hosting the solution must be located in a secure physical environment with
access control protocols and must be trusted.

2.1.2 Administration

l SDS for Kubernetes init container administrators are considered as trusted. They are
responsible for defining SDS for Kubernetes init container security policy in compliance
with the state-of-the-art standards.

l The system administrator is also considered as trusted. He/She is responsible for the
installation and maintenance of the application and server. He/She applies the security
policy defined by SDS for Kubernetes init container administrators.

2.1.3 Kubernetes

The KMaaS API key is a very sensitive security material. Do not store it in clear text, and use it
only via environment variables and Kubernetes secrets.

In the pod manifest, you must specify a volume of type emptyDir: { medium: Memory } to store
the decrypted data so that it can be accessed only during the pod lifetime.

SDS FOR KUBERNETES INIT CONTAINER - ADMINISTRATION GUIDE - V 2.0
2. UNDERSTANDING THE REQUIREMENTS

Page 4/15 sds-en-kubernetes-init_container_guide-v2 - 11/19/2025

https://cyber.gouv.fr/
https://cyber.gouv.fr/en/publications/configuration-recommendations-gnulinux-system
https://cyber.gouv.fr/en
https://cyber.gouv.fr/publications/recommandations-de-securite-relatives-au-deploiement-de-conteneurs-docker
https://github.com/OWASP/Docker-Security
https://cyber.gouv.fr/publications/denis-de-service-distribues-ddos
https://cyber.gouv.fr/publications/denis-de-service-distribues-ddos


2.1.4 KMaaS

Stormshield recommends having a dedicated tenant for SDS for Kubernetes init container to
allow the API key to be revoked without interfering with other applications. We also recommend
using only one API key per init container.

2.2 Infrastructure requirements

The SDS for Kubernetes init container requires:

l A Kubernetes cluster version v1.10 or higher, able to support both the init container and the
ephemeral volume features,

l An image registry to host the SDS for Kubernetes init container docker images to be used by
the Kubernetes cluster,

l An available KMaaS instance version 4.5 or higher. The instance requires:
o A base KMaaS URL,
o A tenant identifier with enabled KAS feature,
o An API key for authentication.

For more information, refer to section Configuring the KMaaS and the KMaaS Administration
Guide.

l Node.js 22 or higher to run the preliminary encryptor.cjs script that encrypts the sensitive
data.

l The following network streams must be open:

Description Protocol Source Base URL Port Route

KMaaS
for init
container

The pod
protected by
SDS for
Kubernetes init
container must
be able to reach
the KMaaS
decrypt route.

Kubernetes
Pod to be
protected

<KMAAS_
URL>

<KMAAS_
PORT>

api/v1/<tenant_
id>/kas/decrypt

KMaaS
for
encryptor.cjs

The
encryptor.cjs
script must be
able to reach
the KMaaS
encrypt route.

Encryptor
script host

<KMAAS_
URL>

<KMAAS_
PORT>

api/v1/<tenant_
id>/kas/encrypt

Contact your KMaaS administrator to get the KMaaS URL and port.

SDS FOR KUBERNETES INIT CONTAINER - ADMINISTRATION GUIDE - V 2.0
2. UNDERSTANDING THE REQUIREMENTS

Page 5/15 sds-en-kubernetes-init_container_guide-v2 - 11/19/2025

https://documentation.stormshield.eu/SEP/en/Content/Administration_Guide/Getting_started.htm
https://documentation.stormshield.eu/SEP/en/Content/Administration_Guide/Getting_started.htm


3. Preparing the SDS for Kubernetes init container
environment

The SDS for Kubernetes init container is provided as a compressed archive containing:

l The Docker image for the init container: sds-kubernetes-init-container-<version>.tar.gz
l The encryptor.cjs script to encrypt the sensitive data with the SDSDK. It must be run before

the pod manifest is applied.
l A Kubernetes pod manifest example (pod.yaml) to deploy the "sdskub" pod using the SDS

for Kubernetes init container and the test application container.

3.1 Loading the Docker images in Kubernetes

You can either deploy Docker image to a Docker registry or to a local registry.

Load the init container image provided in the sds-kubernetes-init-container-<version>.tar
archive, and push them into an image registry.

1. To load the image, with Docker, run the following command:
$ docker load -i sds-kubernetes-init-container-<version>.tar.gz

2. To tag the image and push it in a registry, run the following commands:
$ docker tag stormshield/sdskub-init-container:<VERSION> <IMAGE_
REGISTRY_URL>/<IMAGE_TAG>:<VERSION>
$ docker push <IMAGE_REGISTRY_URL>/<IMAGE_TAG>:<VERSION>

For more information, refer to the Kubernetes documentation.

3.2 Configuring the KMaaS

The SDS Key Management as a Service (KMaaS) provides the API for encrypting/decrypting
sensitive data using Data Encryption Keys (DEKs).

You must configure the KMaaS config.json file as follows:

l Enable the KAS feature,
l Specify at least one API key in the authentication method of the KAS.

For more information, refer to the KMaaS Administration guide.

3.3 Setting the KMaaS parameters in the environment

On the host where you will encrypt the sensitive data, set the KMaaS parameters as
environment variables as described in the table below.

The KMAAS_API_KEY value is the following string encoded in base64:
_KAS_AUTHENTICATION_API_KEY_NAME:_KAS_AUTHENTICATION_API_KEY_VALUE

You can find it in the KMaaS config.json file.

On Unix environments, you can encode the KMaaS API key with this command:
$ echo -n "_KAS_AUTHENTICATION_API_KEY_NAME:_KAS_AUTHENTICATION_API_
KEY_VALUE" | base64

SDS FOR KUBERNETES INIT CONTAINER - ADMINISTRATION GUIDE - V 2.0
3. PREPARING THE SDS FOR KUBERNETES INIT CONTAINER ENVIRONMENT

Page 6/15 sds-en-kubernetes-init_container_guide-v2 - 11/19/2025

https://kubernetes.io/docs/home/
https://documentation.stormshield.eu/SEP/en/Content/Administration_Guide/Getting_started.htm


Environment variable Description

KMAAS_URL URL of the KMaaS.

KMAAS_TENANT_ID ID of the tenant declared in the tenant_id parameter
of the KMaaS config.json file.

KMAAS_API_KEY Base64 string of the concanetated values _KAS_
AUTHENTICATION_API_KEY_NAME:_KAS_

AUTHENTICATION_API_KEY_VALUEof the KMaaS
config.json file.

$ export KMAAS_URL=https://host.kmaas:443
$ export KMAAS_TENANT_ID=025f02fe-bee2-231c-bf76-b5ead30327c0
$ export KMAAS_API_
KEY=NCH2aG9yaXplZEFwaUtleTpvY2dZWENFSzY2UHJUSTYxTnkzSmtBRkxyM0JaL0x4Vw==

SDS FOR KUBERNETES INIT CONTAINER - ADMINISTRATION GUIDE - V 2.0
3. PREPARING THE SDS FOR KUBERNETES INIT CONTAINER ENVIRONMENT

Page 7/15 sds-en-kubernetes-init_container_guide-v2 - 11/19/2025



4. Encrypting and decrypting sensitive data
The table below describes the steps of the encrypt and decrypt procedure.

Click on a link to open the corresponding procedure in this guide.

Steps Description

1 Encrypt the sensitive data using the encryptor.cjs script. The result is the Encrypted
sensitive data, a base64-encoded string containing the encrypted data, the encrypted
DEK, and some metadata.

2 Create the Kubernetes secrets for securely storing the KMaaS API key and the Encrypted
sensitive data.

3 Configure the pod.yaml Kubernetes manifest by setting the KMaaS parameters.

4 Decrypt the sensitive data in SDS for Kubernetes init container by deploying the sdskub
pod.

4.1 Understanding encrypt and decrypt operations

4.1.1 Encrypt workflow

SDS FOR KUBERNETES INIT CONTAINER - ADMINISTRATION GUIDE - V 2.0
4. ENCRYPTING AND DECRYPTING SENSITIVE DATA

Page 8/15 sds-en-kubernetes-init_container_guide-v2 - 11/19/2025



4.1.2 Decrypt workflow

4.2 Encrypting sensitive data

The encryptor.cjs script encrypts your sensitive data before you set it as a Kubernetes secret.
We recommend that you perform this operation in a secure and trusted environment, as you
will handle data in clear text. In addition, be sure to clean up your command history.

1. Run the encryptor.cjs script provided in the sds-kubernetes-init-container-<version>.tar
archive.
 $ node encryptor.cjs "sensitive data"
The data to be encrypted must not exceed 10 KB.
The command result is similar to:
$ [INFO] {"encrypted_sensitive_data":
'BKJhY6RhYVBHD4jEAjHoP6FCVF7Ejnifk7prOWqJu88dibUOGuU+8Rai6DEl67Wdc
zs9KncrRQAYj2qqwjFNvdicASV4='}

2. Copy the value of the encrypted sensitive data to use it in next procedure.

4.3 Creating the Kubernetes secrets

In Kubernetes, you must create two secrets for the sensitive data that you have encrypted:

l A secret containing the KMaaS API key that will be used to authenticate to the KMaaS during
decryption,

l A secret containing the encrypted sensitive data.

SDS FOR KUBERNETES INIT CONTAINER - ADMINISTRATION GUIDE - V 2.0
4. ENCRYPTING AND DECRYPTING SENSITIVE DATA

Page 9/15 sds-en-kubernetes-init_container_guide-v2 - 11/19/2025



1. Create a secret from the base64 API key string set in section Configuring the KMaaS. It
allows Kubernetes to connect to the KMaaS to decrypt the sensitive data.
For example, you can use the following command:
$ kubectl create secret generic sdskub-kmaas --from-literal=api-
key="NCH2aG9yaXplZEFwaUtleTpvY2dZWENFSzY2UHJUSTYxTnkzSmtBRkxyM0JaL
0x4Vw=="

2. Create a secret from the encrypted sensitive data obtained in section Encrypting sensitive
data.
For example, you can use the following command:
$ kubectl create secret generic sdskub-encrypted-data --from-
literal=encrypted-sensitive-
data="BKJhY6RhYVBHD4jEAjHoP6FCVF7Ejnifk7prOWqJu88dibUOGuU+8Rai6DEl
67Wdczs9KncrRQAYj2qqwjFNvdicASV4="

In the above examples, two secrets are created:

l sdskub-kmaas is the secret containing the KMaaS API key,
l sdskub-encrypted-data is the secret containing the encrypted sensitive data.

4.4 Configuring the Kubernetes manifest

You must configure the pod manifest to indicate that such application will be able to use such
and such secrets via the init-container.

1. From the sds-kubernetes-init-container-<version>.tar archive file, retrieve the sample
pod.yaml manifest file.

2. In the file, replace the name and key placeholders values of the following parameters:

Parameter Description

KMAAS_API_KEY Name and key of the secret containing the KMaaS API
key (sdskub-kmaas and api-key in our example).

ENCRYPTED_SENSITIVE_DATA Name and key of the secret containing the encrypted
sensitive data obtained with the encryptor.cjs script
(sdskub-encrypted-data and encrypted-sensitive-data
in our example).

OUTPUT_SENSITIVE_DATA_PATH Path used by the init container to write the decrypted
sensitive data. It must be the path of a volume shared
between the init container and the main container
(/mnt/shared/sensitive-data in our example).

apiVersion: v1
kind: Pod
metadata:
name: sdskub

spec:
restartPolicy: Never
initContainers:

- name: sdskub-init-container
image: IMAGE_TAG:VERSION
env:

- name: NODE_EXTRA_CA_CERTS
value: /etc/ssl/certs/kmaas_ca.crt

- name: KMAAS_API_KEY
valueFrom:
secretKeyRef:

name: sdskub-kmaas
key: api-key

SDS FOR KUBERNETES INIT CONTAINER - ADMINISTRATION GUIDE - V 2.0
4. ENCRYPTING AND DECRYPTING SENSITIVE DATA

Page 10/15 sds-en-kubernetes-init_container_guide-v2 - 11/19/2025



- name: ENCRYPTED_SENSITIVE_DATA
valueFrom:
secretKeyRef:

name: sdskub-encrypted-data
key: encrypted-sensitive-data

- name: OUTPUT_SENSITIVE_DATA_PATH
value: /mnt/shared/sensitive-data

volumeMounts:
- name: sdskub-shared

mountPath: /mnt/shared
- name: trusted-ca-store-volume

mountPath: /etc/ssl/certs/kmaas_ca.crt
subPath: kmaas_ca.crt
readOnly: false

containers: # It is an example container, you have to replace it by your
own image

- name: sdskub-main-container
image: busybox:1.28
command: ["cat", "/mnt/shared/sensitive-data"]
volumeMounts:
- name: sdskub-shared

mountPath: /mnt/shared
volumes:

- name: sdskub-shared
emptyDir: { medium: Memory }
- name: trusted-ca-store-volume

secret: {secretName: trusted-ca-store}

The environment variable NODE_EXTRA_CA_CERTS used in this example contains the
path to the KMAAS CA file that is mounted as a volume. This allows a TLS connection
to be opened between the sdskub-init-container and the KMAAS.
In our example, the command to create the secret would be:
kubectl create secret generic trusted-ca-store --from-
file=<PATH_TO_KMAAS_CA>

This is only useful if your KMaas CA certificate is not trusted by default.

4.5 Decrypting sensitive data

To decrypt the sensitive data, you must deploy the sdskub pod.

l Run the following command to apply the manifest and deploy the pod:
$ kubectl apply -f pod.yaml

The sensitive data is decrypted and stored in the shared volume specified by the OUTPUT_
SENSITIVE_DATA_PATH parameter. If the decryption is successful, the logs are similar to:

$ kubectl logs sdskub -c sdskub-init-container

$ { "timestamp": "2025-05-21T08:54:17.262Z", "severity": "info",
"application_version": "1.0.0", "kind": "domain", "category": "secrets",
"action": "decrypt", "secret_path": "/mnt/shared/sensitive-data", "url":
"https://kmaas-host:3000/api/v1/025f02fe-bee2-231c-bf76-
b5ead30327c0/kas/decrypt"}

In the above example, the decrypted sensitive data is stored in /mnt/shared/sensitive-data.

For more information about logs, refer to section Managing logs

SDS FOR KUBERNETES INIT CONTAINER - ADMINISTRATION GUIDE - V 2.0
4. ENCRYPTING AND DECRYPTING SENSITIVE DATA

Page 11/15 sds-en-kubernetes-init_container_guide-v2 - 11/19/2025



5. Managing logs
SDS for Kubernetes init container generates logs for every operation, making it possible to trace
all operations performed and potential issues. It is a technical activity essential to the security
of information systems.

5.1 Logging prerequisites

To meet the logging requirements for SDS for Kubernetes init container, you must:

l Follow the security recommendations for logging systems issued by the ANSSI in their
document ANSSI-PA-012 (French only),

l Follow the security recommendations for logging systems issued by the ANSSI in their
document ANSSI-FT-082 (French only).

5.2 Accessing logs
l Run the Kubernetes command to access SDS for Kubernetes init container logs:
kubectl logs <POD_NAME> -c <INIT_CONTAINER_NAME>

5.3 Generic log fields

The following fields are displayed for all logs generated by SDS for Kubernetes init container in
the order shown in the table.

Field Description Type Mandatory/Optional

timestamp Date and time at which the log was created. In UTC
format.
Example: "2025-05-21T08:54:17.262"

String in ISO
8601 format

Mandatory

severity Level of severity of the log.
Prescribed values:

l info: Normal operation information message
that requires no action,

l err: Action failed.

String Mandatory

application_
version

Application version.
Example: "1.0.0"

Mandatory

kind Log family to which the log belongs.
Prescribed value:

l domain: SDS for Kubernetes init container
business operation logs.

String Mandatory

category Log category.
Prescribed values:

l secrets: Logs related to the sensitive data
encrypted by SDS for Kubernetes init container.

String Mandatory

action Event that occurred.
Prescribed value:

l decrypt

String Mandatory

SDS FOR KUBERNETES INIT CONTAINER - ADMINISTRATION GUIDE - V 2.0
5. MANAGING LOGS

Page 12/15 sds-en-kubernetes-init_container_guide-v2 - 11/19/2025

https://cyber.gouv.fr/en/
https://cyber.gouv.fr/publications/recommandations-de-securite-pour-larchitecture-dun-systeme-de-journalisation
https://cyber.gouv.fr/en/
https://cyber.gouv.fr/publications/recommandations-de-securite-relatives-au-deploiement-de-conteneurs-docker


The fields in the error block described below are displayed for all logs generated by the SDS for
Kubernetes init container in the event of an error when executing the action:

Field Description Type Mandatory/Optional

error.code Error identifier. String Mandatory

error.message Error message. String Mandatory

5.4 Domain - Business operation logs

The log fields described below relate to business operations performed by SDS for Kubernetes
init container. They belong to the Domain log family (Kind:domain).

5.4.1 secrets category

This category of logs contains all the operations related to the decryption of encrypted
sensitive data.

decrypt action
l The decrypt action means that a decrypt request has been made. This is the case whenever

sensitive data is decrypted using SDS for Kubernetes init container.

This action generates an "info" severity log in the event of success, or an "err" severity log in the
event of an error.

The log fields for this action are as follows:

Field Description Type Required/Optional

secret_path Path to the decrypted sensitive data.
Example: "/mnt/shared/sensitive-data"

String Mandatory

url URL of the KMaaS used for decryption
Example:
"https://host-kmaas:443"

String Mandatory

SDS FOR KUBERNETES INIT CONTAINER - ADMINISTRATION GUIDE - V 2.0
5. MANAGING LOGS

Page 13/15 sds-en-kubernetes-init_container_guide-v2 - 11/19/2025



6. Further reading
Additional information and answers to questions you may have about SDS for Kubernetes init
container are available on the Documentation website and in the Stormshield knowledge base
(authentication required).

SDS FOR KUBERNETES INIT CONTAINER - ADMINISTRATION GUIDE - V 2.0
6. FURTHER READING

Page 14/15 sds-en-kubernetes-init_container_guide-v2 - 11/19/2025

https://documentation.stormshield.eu/
https://kb.stormshield.eu/en/data-security/for-google-workspace


Page 15/15 sds-en-kubernetes-init_container_guide-v2 - 11/19/2025

SDS FOR KUBERNETES INIT CONTAINER - ADMINISTRATION GUIDE - V 2.0

documentation@stormshield.eu

All images in this document are for representational purposes only, actual products may differ.

Copyright © Stormshield 2025. All rights reserved. All other company and product names
contained in this document are trademarks or registered trademarks of their respective
companies.


	1. Getting started
	2. Understanding the requirements
	2.1 Security requirements
	2.1.1 Environment
	2.1.2 Administration
	2.1.3 Kubernetes
	2.1.4 KMaaS

	2.2 Infrastructure requirements

	3. Preparing the SDS for Kubernetes init container environment
	3.1 Loading the Docker images in Kubernetes
	3.2 Configuring the KMaaS
	3.3 Setting the KMaaS parameters in the environment

	4. Encrypting and decrypting sensitive data
	4.1 Understanding encrypt and decrypt operations
	4.1.1 Encrypt workflow
	4.1.2 Decrypt workflow

	4.2 Encrypting sensitive data
	4.3 Creating the Kubernetes secrets
	4.4 Configuring the Kubernetes manifest
	4.5 Decrypting sensitive data

	5. Managing logs
	5.1 Logging prerequisites
	5.2 Accessing logs
	5.3 Generic log fields
	5.4 Domain - Business operation logs
	5.4.1 secrets category


	6. Further reading

